Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.817
Filtrar
1.
Nucleic Acids Res ; 51(22): 12352-12366, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971327

RESUMO

Bacterial transformation is an important mode of horizontal gene transfer that helps spread genetic material across species boundaries. Yet, the factors that pose barriers to genome-wide cross-species gene transfer are poorly characterized. Here, we develop a replacement accumulation assay to study the effects of genomic distance on transfer dynamics. Using Bacillus subtilis as recipient and various species of the genus Bacillus as donors, we find that the rate of orthologous replacement decreases exponentially with the divergence of their core genomes. We reveal that at least 96% of the B. subtilis core genes are accessible to replacement by alleles from Bacillus spizizenii. For the more distantly related Bacillus atrophaeus, gene replacement events cluster at genomic locations with high sequence identity and preferentially replace ribosomal genes. Orthologous replacement also creates mosaic patterns between donor and recipient genomes, rearranges the genome architecture, and governs gain and loss of accessory genes. We conclude that cross-species gene transfer is dominated by orthologous replacement of core genes which occurs nearly unrestricted between closely related species. At a lower rate, the exchange of accessory genes gives rise to more complex genome dynamics.


Assuntos
Bacillus , Genoma Bacteriano , Transformação Genética , Bacillus/classificação , Bacillus/genética , Bacillus subtilis/genética , Transferência Genética Horizontal , Genoma Bacteriano/genética , Filogenia
2.
J Hazard Mater ; 457: 131741, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37270965

RESUMO

Copper (Cu) pollution has become a serious environmental problem especially in recent decades. In this study, the mechanisms of Bacillus coagulans (Weizmannia coagulans) XY2 against Cu-induced oxidative stress were explored through a dual model. In mice, Cu disturbed microbial community structure, revealing an increased level of Enterorhabdus abundance and decreased levels of Intestinimonas, Faecalibaculu, Ruminococcaceae and Coriobacteriaceae_UCG-002 abundance. Meanwhile, B. coagulans (W. coagulans) XY2 intervention reversed this trend along with alleviated Cu-induced metabolic disturbances by increasing levels of hypotaurine and L-glutamate and declining levels of phosphatidylcholine and phosphatidylethanolamine. In Caenorhabditis elegans, nuclear translocation of DAF-16 and SKN-1 was inhibited by Cu, which in turn suppressed antioxidant-related enzymes activities. XY2 mitigated biotoxicity associated with oxidative damage caused by Cu exposure via regulating DAF-16/FoxO and SKN-1/Nrf2 pathways and intestinal flora to eliminate excess ROS. Our study provides a theoretical basis formulating future strategy of probiotics against heavy metal contamination.


Assuntos
Bacillus , Cobre , Probióticos , Bacillus/classificação , Bacillus/genética , Bacillus/metabolismo , Masculino , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Cobre/toxicidade , Caenorhabditis elegans , Antioxidantes/metabolismo , Estresse Oxidativo , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL
3.
Microbiol Spectr ; 10(1): e0216921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107331

RESUMO

Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.


Assuntos
Bacillus/genética , Agentes de Controle Biológico/metabolismo , Filogenia , Antifúngicos/metabolismo , Bacillus/classificação , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genômica , Família Multigênica , Reguladores de Crescimento de Plantas/biossíntese , Metabolismo Secundário
4.
Nucleic Acids Res ; 50(11): 6211-6223, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35061904

RESUMO

In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.


Assuntos
Bacillus , Bacillus/classificação , Bacillus/genética , Mapeamento Cromossômico , Evolução Molecular , Técnicas Genéticas , Recombinação Homóloga , Técnicas Microbiológicas , Protoplastos
5.
Int J Biol Macromol ; 194: 800-810, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848239

RESUMO

The hydrophobic nature of wool induced by its surface lipid barrier hinders its wettability during processing. Scouring of wool is conducted to remove this lipid barrier and facilitate any wet processes. Scouring of wool is conducted using soda ash followed by rinsing with huge amount of water to ensure complete removal of alkali. This work aimed at utilization of thermophilic lipase enzyme for removal of wool surface lipid barrier without deterioration on the fibre interior. A thermally stable lipase enzyme was produced from thermophilic microorganism; namely Bacillus aryabhattai B8W22, and was utilized in bio-scouring of wool. The produced enzyme was immobilized on sericin-based discs to enhance its stability and to make it reusable. The activity of both free and immobilized lipase enzymes at different conditions was assessed. The effects of bio-scouring of wool on its dyeability with acid, basic, and reactive dyes, as well as on some of its inherent properties, were monitored. Results showed that the bio-scoured wool exhibits enhanced dyeability with the said classes of dyes more than that of conventionally scoured samples. One-bath scouring and dyeing of wool fibres in two successive steps was conducted to reduce consumption of water and energy during wet processing of wool.


Assuntos
Enzimas Imobilizadas , Lipase/química , Fibra de Lã/análise , Lã/química , Animais , Bacillus/classificação , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/química , Corantes/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipólise , Estrutura Molecular , Temperatura
6.
Appl Biochem Biotechnol ; 194(1): 1-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586599

RESUMO

A novel strain of Bacillus isolated from rhizosphere has shown to be an excellent biocontrol agent against various plant pathogens. In this study, a first report of a Bacillus strain NKMV-3 which effectively controls Alternaria solani, which cause the early blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as Bacillus velezensis NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes, namely iturin C, surfactin A and fengycin B and D, was confirmed through gene amplification. In addition, lipopeptides were also confirmed through liquid chromatography. The extract showed inhibitory effect against A. solani in vitro and detached tomato leaf assays. Bacillus velezensis strain NKMV-3-based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.


Assuntos
Alternaria/crescimento & desenvolvimento , Bacillus , Agentes de Controle Biológico/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Rizosfera , Solanum lycopersicum/microbiologia , Bacillus/classificação , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Doenças das Plantas/prevenção & controle
7.
Microbiol Spectr ; 9(3): e0125521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937163

RESUMO

Fecal microbial community could not fully represent the intestinal microbial community. However, most studies analyzing diarrhea-dominant irritable bowel syndrome (IBS-D) were mainly based on fecal samples. We aimed to characterize the IBS-D microbial community patterns using samples at multiple intestinal sites. This study recruited 74 IBS-D patients and 20 healthy controls (HC). 22.34%, 8.51%, 14.89%, and 54.26% of them contributed to one, two, three, and four sites: duodenal mucosa (DM), duodenal lumen (DL), rectal mucosa (RM), and rectal lumen (RL) of intestinal samples, respectively. Then 16S rRNA gene analysis was performed on these 283 samples. The result showed that IBS-D microbial communities have specific patterns at each intestinal site differing from that of HC. Across hosts and sites, Bacillus, Burkholderia, and Faecalibacterium were the representative genera in duodenum of IBS-D, duodenum of HC, and rectum of HC, respectively. Samples from mucosa and lumen in rectum were highly distinguishable, regardless of IBS-D and HC. Additionally, IBS-D patients have lower microbial co-abundance network connectivity. Moreover, RM site-specific biomarker: Bacteroides used alone or together with Prevotella and Oscillospira in RM showed outstanding performance in IBS-D diagnosis. Furthermore, Bacteroides and Prevotella in RM were strongly related to the severity of abdominal pain, abdominal discomfort, and bloating in IBS-D patients. In summary, this study also confirmed fecal microbial community could not fully characterize intestinal microbial communities. Among these site-specific microbial communities, RM microbial community would be more applicable in the diagnosis of IBS-D. IMPORTANCE Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D. Notably, RM site-specific microbes Bacteroides, Prevotella, and Oscillospira could be used to discriminate IBS-D from HC accurately. Our findings could help clinicians realize the great potential of the intestinal microbial community in RM for better diagnosis of IBS-D patients.


Assuntos
Duodeno/microbiologia , Microbioma Gastrointestinal/genética , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/microbiologia , Reto/microbiologia , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Diarreia/microbiologia , Diarreia/patologia , Disbiose/microbiologia , Faecalibacterium/classificação , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Humanos , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/patologia , Prevotella/classificação , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S/genética
8.
Sci Rep ; 11(1): 23917, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903830

RESUMO

The genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we developed a pipeline for quantitative total assessment of the use of diverse sources of carbon for general metabolism to better appreciate the "culinary preferences" of three distinct Bacillus species, as well as related Staphylococcus aureus. We show that each species has widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. This approach was applied to the growth and survival of B. anthracis in a blood-like environment and find metabolism shifts from sugar to amino acids as the preferred source of energy. Finally, various nutrients in broth and host-like environments are identified that may promote or interfere with bacterial metabolism during infection.


Assuntos
Bacillus/metabolismo , Carbono/metabolismo , Metaboloma , Bacillus/classificação , Metabolômica/métodos
9.
Appl Biochem Biotechnol ; 193(12): 3949-3969, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34529229

RESUMO

Bacillus species genomes are rich in plant growth-promoting genetic elements. Bacillus subtilis and Bacillus velezensis are important plant growth promoters; hence, to further improve their abilities, the genetic elements responsible for these traits were characterized and reported. Genetic elements reported include those of auxin, nitrogen fixation, siderophore production, iron acquisition, volatile organic compounds, and antibiotics. Furthermore, the presence of phages and antibiotic-resistant genes in the genomes are reported. Pan-genome analysis was conducted using ten Bacillus species. From the analysis, pan-genome of Bacillus subtilis and Bacillus velezensis are still open. Ultimately, this study brings an insight into the genetic components of the plant growth-promoting abilities of these strains and shows their potential biotechnological applications in agriculture and other relevant sectors.


Assuntos
Bacillus/classificação , Bacillus/genética , Genoma Bacteriano , Rizosfera , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento
10.
BMC Microbiol ; 21(1): 254, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548024

RESUMO

BACKGROUND: Cellulolytic microorganisms are considered a key player in the degradation of plant biomass in various environments. These microorganisms can be isolated from various environments, such as soils, the insect gut, the mammalian rumen and oceans. The Red Sea exhibits a unique environment in terms of presenting a high seawater temperature, high salinity, low nutrient levels and high biodiversity. However, there is little information regarding cellulase genes in the Red Sea environment. This study aimed to examine whether the Red Sea can be a resource for the bioprospecting of microbial cellulases by isolating cellulase-producing microorganisms from the Red Sea environment and characterizing cellulase genes. RESULTS: Three bacterial strains were successfully isolated from the plankton fraction and the surface of seagrass. The isolated strains were identified as Bacillus paralicheniformis and showed strong cellulase activity. These results suggested that these three isolates secreted active cellulases. By whole genome sequencing, we found 10 cellulase genes from the three isolates. We compared the expression of these cellulase genes under cellulase-inducing and non-inducing conditions and found that most of the cellulase genes were generally upregulated during cellulolysis in the isolates. Our operon structure analysis also showed that cellulase genes form operons with genes involved in various kinds of cellular reactions, such as protein metabolism, which suggests the existence of crosstalk between cellulolysis and other metabolic pathways in the bacterial isolates. These results suggest that multiple cellulases are playing important roles in cellulolysis. CONCLUSIONS: Our study reports the isolation and characterization of cellulase-producing bacteria from the Red Sea. Our whole-genome sequencing classified our three isolates as Bacillus paralicheniformis, and we revealed the presence of ten cellulase orthologues in each of three isolates' genomes. Our comparative expression analysis also identified that most of the cellulase genes were upregulated under the inducing conditions in general. Although cellulases have been roughly classified into three enzyme groups of beta-glucosidase, endo-ß-1,4-glucanase and exoglucanase, these findings suggest the importance to consider microbial cellulolysis as a more complex reaction with various kinds of cellulase enzymes.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Celulase/genética , Genoma Bacteriano , Água do Mar/microbiologia , Sequenciamento Completo do Genoma , Bacillus/classificação , Bacillus/isolamento & purificação , Celulose/metabolismo , Mapeamento Cromossômico , Oceano Índico , Redes e Vias Metabólicas , Filogenia
11.
J Microbiol Biotechnol ; 31(9): 1231-1240, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34261851

RESUMO

Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.


Assuntos
Antifúngicos , Bacillus/fisiologia , Chenopodiaceae/microbiologia , Desenvolvimento Vegetal , Rizosfera , Álcalis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Agentes de Controle Biológico , Genes Essenciais/genética , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Tolerância ao Sal
12.
Microbiol Spectr ; 9(1): e0031121, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287030

RESUMO

Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Bialowieza National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.


Assuntos
Bacillus/genética , Bacillus/fisiologia , Evolução Biológica , Ecologia , Efeitos Antropogênicos , Bacillus/classificação , Bacillus/isolamento & purificação , Elementos de DNA Transponíveis , Genoma Bacteriano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Plasmídeos/genética , Fator sigma , Solo , Microbiologia do Solo , Especificidade da Espécie
13.
BMC Microbiol ; 21(1): 187, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157975

RESUMO

BACKGROUND: Tyrosinases and laccases are oxidoreductase enzymes that are used widely in the food, feed, textile, and biofuel industries. The rapidly growing industrial demand for bacterial oxido-reductases has encouraged research on this enzyme worldwide. These enzymes also play a key role in the formation of humic substances (HS) that are involved in controlling the biogeochemical carbon cycle, providing nutrients and bio-stimulants for plant growth, and interacting with inorganic and organic pollutants besides increasing carbon sequestration and mitigating greenhouse gas emission in the environment. The present study aimed to screen and characterize extracellular tyrosinase and laccase-producing soil bacteria that could be utilized in the polymerization of phenols. RESULTS: Twenty isolates from different soil samples collected from forest ecosystems were characterized through ARDRA using restriction digestion with AluI, HpaII, and HaeIII restriction enzymes. The results of Hierarchical Cluster Analysis (HCA) revealed a 60 % similarity coefficient among 13 out of 20 isolates, of which, the isolate TFG5 exhibited only 10 % similarity when compared to all the other isolates. The isolate TFG5 exhibited both tyrosinase (1.34 U.mL- 1) and laccase (2.01 U.mL- 1) activity and was identified as Bacillus aryabhattai. The increased polymerization activity was observed when B. aryabhattai TFG5 was treated with phenols. The monomers such as catechol, p-Hydroxy benzoic acid, ferulic acid, and salicylic acid were polymerized efficiently, as evidenced by their FT-IR spectra depicting increased functional groups compared to the standard mushroom tyrosinase. CONCLUSIONS: The polymerization ability of B. aryabhattai TFG5 could be applied to phenol-rich wastewater treatment for efficient precipitation of phenols. Furthermore, tyrosinases can be used for enhancing the synthesis of HS in soil.


Assuntos
Bacillus/enzimologia , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fenóis/metabolismo , Bacillus/classificação , Análise por Conglomerados , Fenóis/química , Polimerização
14.
PLoS One ; 16(6): e0252823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129651

RESUMO

The reduction of the use chemical pesticides in agriculture is gaining importance as an objective of decision-makers in both politics and economics. Consequently, the development of technically efficient and economically affordable alternatives as, e.g., biological control agents or practices is highly solicited. Crown gall disease of dicotyledonous plants is caused by ubiquitous soil borne pathogenic bacteria of the Agrobacterium tumefaciens species complex, that comprises the species Agrobacterium fabrum and represents a globally relevant plant protection problem. Within the framework of a screening program for bacterial Agrobacterium antagonists a total of 14 strains were isolated from Tunisian soil samples and assayed for antagonistic activity against pathogenic agrobacteria. One particularly promising isolate, termed strain MBY2, was studied more in depth. Using a Multilocus Sequence Analysis (MLSA) approach, the isolate was assigned to the taxonomic species Bacillus velezensis. Strain MBY2 was shown to display antagonistic effects against the pathogenic A. fabrum strain C58 in vitro and to significantly decrease pathogen populations under sterile and non-sterile soil conditions as well as in the rhizosphere of maize and, to a lower extent, tomato plants. Moreover, the ability of B. velezensis MBY2 to reduce C58-induced gall development has been demonstrated in vivo on stems of tomato and almond plants. The present study describes B. velezensis MBY2 as a newly discovered strain holding potential as a biological agent for crown gall disease management.


Assuntos
Agrobacterium/fisiologia , Antibiose/fisiologia , Bacillus/fisiologia , Tumores de Planta/microbiologia , Solanum lycopersicum/microbiologia , Zea mays/microbiologia , Bacillus/classificação , Bacillus/genética , Agentes de Controle Biológico/farmacologia , Contenção de Riscos Biológicos/métodos , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Rizosfera , Microbiologia do Solo
15.
Arch Microbiol ; 203(7): 4127-4132, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34057547

RESUMO

In this study, we report a novel Gram-positive bacterium, designated as strain CS13T, isolated from deep-sea sediment collected in the cold seep area of the South China Sea. Growth of strain CS13T occurred at 16-37 °C (optimum 25-28 °C), pH 7.0-9.0 (optimum, 7.0), and 0-8% (w/v) NaCl (optimum, 2-3%). Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain CS13T belonged to the genus Bacillus. The closest phylogenetic neighbors of strain CS13T are Bacillus carboniphilus JCM 9731T (96.0%), Bacillus pakistanensis NCCP-168T (95.7%) and Bacillus acidicola 105-2T (95.6%). The genomic DNA G + C content of strain CS13T is 43.7 mol%. The principal respiratory quinone was menaquinone 7 (MK-7). The polar lipids of CS13T contained diphosphatidylglycerol, phosphatidylglycerol, phospholipid, and glycolipid. The major fatty acids of CS13T contained anteiso-C15:0, anteiso-C17:0, C16:0 and C18:0. Strain CS13T harboured meso-diaminopimelic acid as the diagnostic diamino acid. Phylogenetic, physiological, biochemical, and morphological analyses suggested that strain CS13T represents a novel species of genus Bacillus, and the name Bacillus fonticola sp. nov. is proposed for the type species CS13T (= CCTCC AB 2019194T = JCM 33663T).


Assuntos
Bacillus , Sedimentos Geológicos , Bacillus/classificação , Bacillus/genética , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
16.
J Microbiol Methods ; 186: 106240, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992680

RESUMO

Aerobic plate counting assays based on the pour-plate technique are frequently used to enumerate microbial products; however, colony swarming and merging at the agar surface can reduce the accuracy of these assays. Some plating methods mitigate this risk through the inclusion of strategies including agar overlays; however, these interventions may be inadequate to mitigate swarming and merging of certain Bacillus colonies. In the present study, we assessed the accuracy of several pour-plate techniques for the enumeration of a mixed-species Bacillus assemblage. Tested modifications included a customized culture medium formulation, agar overlays, decreased incubation times and increased incubation temperature. Methods which produced countable plates were assessed for agreement with a Bacillus-specific plate counting assay and with total cell counts rendered by flow cytometry. While all tested pour-plate methods underestimated Bacillus endospore concentrations relative to flow cytometry and customized spread-plating, our results suggest that increasing incubation temperature and the inclusion of bile salts into culture medium formulations can improve the accuracy of pour-plate techniques when used to enumerate Bacillus assemblages by decreasing the incidence of spreading colonies. As Bacillus endospore preparations become more ubiquitous in the market, familiar enumeration methods such as the pour-plate technique may require methodological modifications to ensure that the cGMP compliance of Bacillus-based microbial products is assessed accurately.


Assuntos
Bacillus/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Meios de Cultura/metabolismo , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/metabolismo , Contagem de Colônia Microbiana/instrumentação , Meios de Cultura/química , Esporos Bacterianos/classificação , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/metabolismo , Temperatura
17.
J Microbiol Biotechnol ; 31(7): 999-1010, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34024889

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. They are highly toxigenic and carcinogenic. Probiotic bacteria isolated from fermented foods were tested to check their ability to degrade and/or detoxify PAHs. Five probiotic bacteria with distinct morphologies were isolated from a mixture of 26 fermented foods co-cultured with benzo(a)pyrene (BaP) containing Bushnell Haas minimal broth. Among them, B. velezensis (PMC10) significantly reduced the abundance of BaP in the broth. PMC10 completely degraded BaP presented at a lower concentration in broth culture. B. velezensis also showed a clear zone of degradation on a BaP-coated Bushnell Haas agar plate. Gene expression profiling showed significant increases of PAH ringhydroxylating dioxygenases and 4-hydroxybenzoate 3-monooxygenase genes in B. velezensis in response to BaP treatment. In addtion, both live and heat-killed B. velezensis removed BaP and naphthalene (Nap) from phosphate buffer solution. Live B. velezensis did not show any cytotoxicity to macrophage or human dermal fibroblast cells. Live-cell and cell-free supernatant of B. velezensis showed potential anti-inflammatory effects. Cell-free supernatant and extract of B. velezensis also showed free radical scavenging effects. These results highlight the prospective ability of B. velezensis to biodegrade and remove toxic PAHs from the human body and suggest that the biodegradation of BaP might be regulated by ring-hydroxylating dioxygenase-initiated metabolic pathway.


Assuntos
Bacillus/metabolismo , Poluentes Ambientais/metabolismo , Alimentos Fermentados/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Probióticos , RNA Ribossômico 16S/genética
18.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805133

RESUMO

In recent decades, intensive crop management has involved excessive use of pesticides or fertilizers, compromising environmental integrity and public health. Accordingly, there has been worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity. Among alternative approaches, Plant Growth-Promoting (PGP) rhizobacteria are receiving increasing attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and their antagonistic activity against the plant pathogen fungus Macrophomina phaseolina. Based on the higher antifungal activity, strain RHFS10, identified as Bacillus vallismortis, was further examined and cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to purify and preliminarily identify the antifungal metabolites. Interestingly, the minimum inhibitory concentration assessed for the fractions active against M. phaseolina was 10 times lower and more stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results suggest the use of B. vallismortis strain RHFS10 as a potential plant growth-promoting rhizobacteria as an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina.


Assuntos
Ascomicetos/patogenicidade , Bacillus/fisiologia , Agentes de Controle Biológico , Doenças das Plantas/microbiologia , Rizosfera , Antibiose , Antifúngicos/farmacologia , Bacillus/classificação , Biofilmes , Hidrólise , Peso Molecular , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma
19.
Microbiol Res ; 248: 126751, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33839507

RESUMO

In this study, the seed endosphere of a bacterial wilt tolerant chilli cv. Firingi Jolokia was explored in order to find effective agents for bacterial wilt disease biocontrol. A total of 32 endophytic bacteria were isolated from freshly collected seeds and six isolates were selected based on R. solanacearum inhibition assay. These isolates were identified as Bacillus subtilis (KJ-2), Bacillus velezensis (KJ-4), Leuconostoc mesenteroides (KP-1), Lactococcus lactis (LB-3), Bacillus amyloliquefaciens (WK-2), and Bacillus subtilis (WK-3) by 16S rRNA gene sequencing. In the in planta R. solanacearum inhibition assay carried out by seedling root bacterization method, Bacillus subtilis (KJ-2) exhibited highest biocontrol efficacy of 86.6 % on 7th day post R. solanacearum inoculation and a minimum biocontrol efficacy of 52.9 % was noted for Leuconostoc mesenteroides (KP-1). GC-HRMS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Bacillus subtilis (KJ-2); which may contribute to inhibition of R. solanacearum. In the growth promotion assay conducted using these isolates, only two of them namely Bacillus subtilis (KJ-2) and Bacillus amyloliquefaciens (WK-2) showed growth promotion in true leafed tomato plants. All the selected seed endophytic isolates were able to control bacterial wilt of tomato at the seedling stage and Bacillus subtilis (KJ-2) was found to be most effective in controlling the disease. The results of the present study highlighted that seed endosphere of bacterial wilt tolerant cultivar is a rich source of R. solanacearum antagonizing bacterial isolates.


Assuntos
Antibiose , Bacillus/fisiologia , Capsicum/microbiologia , Proteção de Cultivos/métodos , Endófitos/fisiologia , Lactococcus/fisiologia , Doenças das Plantas/prevenção & controle , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Lactococcus/classificação , Lactococcus/genética , Lactococcus/isolamento & purificação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sementes/microbiologia
20.
Microbiol Res ; 248: 126754, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33848783

RESUMO

Endophytic bacteria show important abilities in promoting plant growth and suppressing phytopathogens, being largely explored in agriculture as biofertilizers or biocontrol agents. Bacteria from canola roots were isolated and screened for different plant growth promotion (PGP) traits and biocontrol of Sclerotinia sclerotiorum. Thirty isolates belonging to Bacillus, Paenibacillus, Lysinibacillus, and Microbacterium genera were obtained. Several isolates produced auxin, siderophores, hydrolytic enzymes, fixed nitrogen and solubilized phosphate. Five isolates presented antifungal activity against S. sclerotiorum by the dual culture assay and four of them also inhibited fungal growth by volatile organic compounds production. All antagonistic isolates belonged to the Bacillus genus, and had their genomes sequenced for the search of biosynthetic gene clusters (BGC) related to antimicrobial metabolites. These isolates were identified as Bacillus safensis (3), Bacillus pumilus (1), and Bacillus megaterium (1), using the genomic metrics ANI and dDDH. Most strains showed several common BGCs, including bacteriocin, polyketide synthase (PKS), and non-ribosomal peptide synthetase (NRPS), related to pumilacidin, bacillibactin, bacilysin, and other antimicrobial compounds. Pumilacidin-related mass peaks were detected in acid precipitation extracts through MALDI-TOF analysis. The genomic features demonstrated the potential of these isolates in the suppression of plant pathogens; however, some aspects of plant-bacterial interactions remain to be elucidated.


Assuntos
Antibiose , Ascomicetos/crescimento & desenvolvimento , Bacillus/fisiologia , Brassica napus/microbiologia , Endófitos/fisiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/metabolismo , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brassica napus/crescimento & desenvolvimento , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...